Logic


Notes in propositional logic, predicate logic, and proof strategies

Quantification

Universal Quantifier

The universal quantification xXP(x)\forall x \in X \bullet P(x) expresses that a predicate PP must hold for every element of type XX.

The quantifier may include a constraint on the type: xXXYP(x)\forall x \in X \mid X \subseteq Y \bullet P(x), which can be translated to an implication on the predicate: xXXYP(x)\forall x \in X \bullet X \subseteq Y \implies P(x).

Negating a universal quantification is equivalent to an existential quantification with a negated predicate: ¬xXP(x)xX¬P(x)\lnot \forall x \in X \bullet P(x) \iff \exists x \in X \bullet \lnot P(x).

Existential Quantifier

The existential quantification xXP(x)\exists x \in X \bullet P(x) expresses that a predicate PP holds for at least one element of type XX.

The quantifier may include a constraint on the type: xXXYP(x)\exists x \in X \mid X \subseteq Y \bullet P(x), which can be translated to a conjunction on the predicate: xXXYP(x)\exists x \in X \bullet X \subseteq Y \land P(x).

Negating an existential quantification is equivalent to a universal quantification with a negated predicate: ¬xXP(x)xX¬P(x)\lnot \exists x \in X \bullet P(x) \iff \forall x \in X \bullet \lnot P(x).

Uniqueness Quantifier

The uniqueness quantifier 1xXP(x)\exists_{1} x \in X \bullet P(x) expresses that a predicate PP must hold for exactly one element of type XX. This quantifier might be expressed in terms of the existential and universal quantifiers as follows: 1xXP(x)xXP(x)yXP(y)y=x\exists_{1} x \in X \bullet P(x) \iff \exists x \in X \bullet P(x) \land \forall y \in X \bullet P(y) \implies y = x, therefore the result of negating a uniqueness quantifier looks like this:

¬1xXP(x)¬xXP(x)yXP(y)y=xxX¬(P(x)yXP(y)y=x)xX¬P(x)yX¬(P(y)y=x)xX¬P(x)yXP(y)yxxXP(x)yXP(y)yx\begin{align} \lnot \exists_{1} x \in X \bullet P(x) &\iff \lnot \exists x \in X \bullet P(x) \land \forall y \in X \bullet P(y) \implies y = x \\ &\iff \forall x \in X \bullet \lnot (P(x) \land \forall y \in X \bullet P(y) \implies y = x) \\ &\iff \forall x \in X \bullet \lnot P(x) \lor \exists y \in X \bullet \lnot (P(y) \implies y = x) \\ &\iff \forall x \in X \bullet \lnot P(x) \lor \exists y \in X \bullet P(y) \land y \neq x \\ &\iff \forall x \in X \bullet P(x) \implies \exists y \in X \bullet P(y) \land y \neq x \end{align}

Similarly to the existential quantifier, A constraint in a uniqueness quantifier becomes a conjunction in the predicate: 1xXXYP(x)1xXXYP(x)\exists_{1} x \in X \mid X \subseteq Y \bullet P(x) \iff \exists_{1} x \in X \bullet X \subseteq Y \land P(x).

Proof Strategies

Negation

Disjunction

Implication

Equivalence

Universal Quantifier

Existential Quantifier

Proof by Contradiction

Given a goal XX, assume ¬X\lnot X and derive a logical contradiction.